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Fractional non-Brownian motion and trapping-time distributions of grains in rice piles

K. I. Hopcraft, R. M. J. Tanner, E. Jakeman, and J. P. Graves
Theoretical Mechanics Division, School of Mathematical Sciences, University of Nottingham, University Park,
Nottingham, NG7 2RD, United Kingdom
(Received 26 January 2001; published 24 July 2001

Non-Gaussian height fluctuations occurring on the fueling time scale of a slowly driven rice pile match those
observed in some turbulent/critical phenomena, forming an anticorrelated random fractal process with Hurst
exponentd=0.2. Inspired by this observation, the concept of fractional Brownian m@E&) is extended
to treat stochastic processes with skewed increments. Simulations of this process for antipersistent motion have
first return time distribution deviating from trte 2" law for FBM. The first return time distribution of this
fractional non-Brownian motion describes and quantitatively determines the trapping-time distribution of
grains in rice piles upon incorporating a continuous representation of the additional height fluctuations that
occur on the time scale between fueling events.
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I. INTRODUCTION concept of fractional Brownian motio(FBM) to one with
skewed increments. The first return distribution of this “frac-
Sand pileg1] or rice piles[2,3] have become model para- tional non-Brownian motion(FNBM) differs from that for
digms for self-organized criticalSOQ phenomena in non- FBM. Further diagnostics examine the height fluctuations
equilibrium complex systems, and SOC has been used toccurring on the intrafueling time scale occurring between
describe physical4], biological [5], and economid¢6] be-  fueling events. These fluctuations modify the FNBM by ter-
haviors, among otheg]. The models are rules for redistri- minating longer trapping times and provide quantitative
bution of a physical quantity to nearest neighbor locationsagreement with cellular automaton data.
once a local nonlinear stability threshold is exceeded, under Fractional Brownian motiofil0] describes the trajectory
slow, continuous driving. The complex behaviors that obtainof a particle whose increments have a Gaussian distribution.
have prompted workers to seek links between SOC andhe Hurst exponentl measures the degree of correlation in
stable random processg8]. Non-Gaussian stable law8]  the random walk constructed from these increments. Persis-
have probability density functionsPDF’'s) possessing tence or antipersistence occurdHfis greater or less thah,
power-law tailsp(x)~x~" with indices in the range £v  respectively, and Brownian motion occurs whér: 3. For a
<3, so the variance and higher moments of the distributiongarticle undergoing FBM, the distribution of first return has a
do not exist. One property used to characterize rice-pile phestable-law tail with indexv=2—H [11], being exactly stable
nomenology occurs on the fueling time scale and is the timevhenH =3 [12].
a grain remains at rest before being transported to another Were the height of a pile executing FBM, the time for a
site—the *“trapping time.” Experiments and simulations grain to return to the surface would have a distribution with
[2,3] have PDF’s for these trapping times with tails of indexindex in the range £ v<2. A grain can move and thereby
v~2.16 falling within that part of the stable regime for end its trapping time only when at the surface of the pile;
which a mean trapping time exists. Although scaling argu-hence the trapping-time distribution should match that for
ments have been invoked to collate different system sizethe first return time. This observation is contradicted by the
and rice-pile algorithms within universality classes, the reameasured values, which hawve-2, for both experiment and
sons why the trapping-time distribution is apparently asympsimulation. Thus the height of the pile cannot be described
totically stable andv adopts specific values have not beenby a FBM. This deduction is borne out in what follows by
explained nor related to the microdynamics of the systemdelineating the competing effects that result from the skew-
This paper sheds light on these two issues through linkingness of the distribution of height fluctuations occurring on
the PDF of trapping times to the distribution of first returnsthe fueling time scale and the modifications introduced by
of a random walk whose increments represent the fluctuathe fluctuations occurring on the intrafueling time scale.
tions in the height of the pile occurring on two separate time In the following section, the rice-pile cellular automaton
scales. is briefly described and the height fluctuations of the pile and
A quantitative determination of the value of requires their correlation properties obtained and fitted to a model.
implementing different diagnostics in a rice-pile cellular au- Section Ill describes the technique used for obtaining the
tomaton to ascertain the form of fluctuations in the height ofcontinuous stochastic process that determines these fluctua-
the pile and their correlation properties. These diagnostictons and the results of computer simulations of this process
reveal that the height of the pile, when viewed on the fuelingwhich are used to obtain the first return time distribution.
time scale, is described by a fractal random process witlection 1V considers how the height fluctuations occurring
non-Gaussian increments. It will be argued that the trappingen the intrafueling time scale alters the first return distribu-
time distribution is equivalent to the first return time of this tion. The final section summarizes the main results and
random process, and its description requires broadening th®iefly discusses the implications. Technical details of how
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FIG. 1. The PDF ofAh for the cellular automaton on the fueling
time scale are shown by data pointday, and the dashed line is Eq.
(1). Data points in(b) showp(t) for the height changes. The solid
line is EqQ.(2) with H=0.2
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with I'(8) the Gamma function.

Another diagnostic that can be applied measures the cor-
relation properties of the height fluctuations. Data points
in Fig. 1(b) show the autocorrelation functiorp(t)
=(Ah(t)Ah(0))/a?, where the time lag is measured in fu-
eling events and the angular brackets denote an ensemble
average over the same sites as those for which the ( @DE
valid. Assuming the height of the pile is a(nonstationary
fractal process with structure functiof[h(t)—h(0)]?)
~2|t|?" yields an autocorrelation function for thetation-
ary) increments

1
p(t)=§(|1+t|2H+|1—t|2H—2|t|2H), 2

and the curve that results is shown by the solid line in Fig.
1(b) for whenH=0.2.
The autocorrelation functio(®) satisfies

the continuous non-Gaussian stochastic process is obtained

from a suitably correlated Gaussian process are assigned
the Appendix.

Il. HEIGHT FLUCTUATIONS OF A RICE PILE ON THE
FUELING TIME SCALE

The rice-pile cellular automaton, whose rules are ded

scribed in[ 3], retains the identity of any grain in the pile, and
so sophisticated diagnostics can be applied to elucidate t

various behaviors it produces. One such diagnostic is thé

height changeAh between consecutive fuelings, which is
monitored for all sites in the pile beyond the location of the
central fueling point.

The PDF ofAh, shown by data points in Fig.(d), is

stationary and independent of the pile size. It has zero mean,

variance (Ah?)=¢%=3.01, and skewness coefficiers
=(Ah%/0%?~—0.94. These height fluctuations have a dis-

to 0, H<1/2
J dt/p(t')={ 1, H=1/2
- w, H>1/2

nd has power-law memory for large times wigt)
~H(2H-1)t?"~1), These two results indicate that the pro-

HeEss is antipersistent <3. An anticorrelated fractal pro-

ess therefore accurately describes height changes of the pile
on the fueling time scale. The first return distribution of such
random motion will now be considered.

Ill. THE FIRST PASSAGE DISTRIBUTION
OF NON-GAUSSIAN CORRELATED NOISE

Although algorithms exist for generating FBM with pre-

tribution similar to that describing experimentally measuredscribedH (e.g.,[14]), these are inapplicable to motions with

fluctuations of a confined turbulent flow and numerically cal-
culated critical behavior in a ferromagrét3]. The PDF

Aexp(—|Ah/ac|?),
P(AR)=) Aexp(—|Ah/c|),

Ah<0

Ah=0 ()

adequately models these data and is shown by the dash
line in Fig. @) for B=1.13, x=1.98, with constantg, «,
andc determined by stipulating that the PDF have unit nor-
malization, zero mean, and variane@, viz.,

non-Gaussian increments. Indeed, until very recently it has
been impossible to rigorously generate noise having arbi-
trary, exponentially bounded single interval statistics and
prescribed autocorrelation function. The “memoryless non-
linear transformationMNLT) [15] enables such noise to be
formed from a suitably correlated Gaussian random process,
for which the method of generation by Fourier synthesis is
&down (e.g.,[16]). Details of the MNLT technique are as-
signed to the Appendix.

A lengthy but straightforward calculation following Ref.
[15] obtains the result
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1 & rg®)" The variablex,= 2erfc 1(2Ac), andI', *(x) is the inverse
p(t)= o ZO Y of the “regularized” incomplete Gamma function, defined
" ' throughT",(x) =1/T'(u) [ du uw*~texp(—u). Equation(3a)
o 5 2 expresses the non-Gaussian correlation functi¢t) as a
X fﬁwdxexp(—x /Z)HH(X/‘/E)Ah(X)) (38 power series of terms involving the Gaussian correlation
function rg(t) which can be used to obtairrg(t)
where =rg(p(t)). Equation(3b) provides the mapping for generat-
ing random numbers with PDE) from a standard Gaussian
ac[ Fl( (1—erfd x/ \/5]/2)) } v X<, random variable.
VB Aacl'(1+1/8) ’ To illustrate the modifications to FBM caused by skewed
Ah(x)= erfc(x/\2) Up increments, such as those described by (Eg.consider fix-
M , Xc - ing the mean, variance, andto the values given above and
{ 1’”(2Acl“(1+ 1/M))

usep as the variable to control the skewness of the process

(3b)  through

3T (1+4/u)— a*T(1+4/B)][T'(1+ 1Uw) + al (1+1/B)]"?
) [F(1+3/M)+Q’3F(1+3/ﬂ)]3/2 .

S

The open circles are fdd =0.2, the star corresponds to pa-
p(t) can be derived from a Gaussian proc¢sgét)} with  rameters for the rice-pile simulation, and the filled circles are
zero mean, unit variance, and correlation functiggit), in ~ for H=0.35. For larger absolute values sff saturates in

the following way. First a sequence of uncorrelated Gaussiahoth instances, although the saturation value decreases as
random numbers is generated using any standard method.— 1/2. This is to be expected because the motion must
The correlation function of the non-Gaussian process givemecessarily be Brownian wheth=1/2 by virtue of the cen-

by Eq.(2) is used in conjunction with Eq3a) to obtain the tral limit theorem[12], and this observation is confirmed by
correlation function of the Gaussian procesg(t) the simulations. For valuedd>1/2, f=0 and so the return
=rg(p(t)), the inversion being performed numerically. This times remain the same as those for FBM. Thus the skewness
is then used to generate a sequence of correlated Gaussiaithe underlying process effectively enhances the valug of
random numbergx(t)} by the Fourier synthesis method appearing in the exponent for the return times b 1/2.

A non-Gaussian procegd\h(t)} with correlation function

[16]. These random numbers are used as inputs {3 to
form a sequence of non-Gaussian random numpkhgt)}
that have the correct autocorrelation functipiit). With

The data forming each point in Fig. 3 are determined from
~10° realizations and each point in the diagram is obtained
using the technique exemplified by Fig. 2 from a power-law

these correlated non-Gaussian random numbers, the fratail extending over 3.3 decades. This exceeds the 3 decades
tional non-Brownian motion of power-law behavior displayed [11]. The simulations are

n
g(tn>zh<tn>—<h>=§1Ah<tJ> (4) = a0
£ 97 0s=-094 .

. X
is formed. 0.5} x s=-1.75 x

The first return time distribution of, or “down cross- L x X “ o009
. » s . — 0.25 X o o]
ings,” gives the epochs for whicti>0. In the context of the S 558998 4 s
rice pile, these epochs can be interpreted as the time between §° o 4 ® b A
the burial of a grain and its reemergence at the surface of the  _, .
pile. The PDFp(t,s) for the times between an up and a
down crossing have a power law with index=2—H 0.5
—f(s,H), as confirmed in Fig. 2, which displays the devia- -0.75
tion of the tail of the return time distribution from that for

FBM for a subset of all the results. Plotting "p(t,s) as a 1 2 3 1 5
function oft for H=0.2 ands=0, —0.94, and—1.75 and logyol ¢1
then fitting the data to a line using least squares obtains

FIG. 2. Data fors= —0.94 ands= — 1.75 show the deviation of

f(s,H). Figure 3 showd (s,H) as a function ofs for two
values ofH. In both case$ is symmetric abous=0, being  the return time distribution from FBMs=0) on the fueling time

necessarily zero &&=0 when the motion reverts to FBM. scale. The Hurst exponeht=0.2 in each case.
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FIG. 3. The functiorf appearing in the exponent for the return FIG. 4. Schematic of height fluctuatiorfarbitrary unit$ at a
time distribution as a function of. Open circles are foH=0.2.  single site on the fuelingthick lines and intrafueling(thin lines
The star denotes the value for the simulation. The filled circles ar@&ime scales.
for H=0.35.

fects. However, this neglects the intrafueling time scale fluc-
insensitive to finite step-size effects. Inaccuracies induced byjations that terminate the trapping timetat4.6. Thus the
these would manifest themselves as a biasing of the randofNBM overestimates the length of trapping times through
walk, being especially evident wheid>1/2. None of the not accounting for downward excursions in the height of the
simulations exhibit such a drift for any value idfconsidered p||e on the intrafue"ng time scale. Upward excursions of the
and the process(t) has zero mean throughout. Consideringpile do not affect the dynamics.
the time between an up and down crossing gives the distri- The points in Fig. 5 show the PDF for the maximum
bution of times for whichf <0 and this has identical distri- downward excursion for the height of the pilth on the
bution to the times for whictf>0. Indeed, this must be so intrafueling time scale produced by the cellular automaton,
because botl\h(t) and {(t) have zero mean, and so the which has standard deviatians;,=0.66. The distribution is
average amount of time the processes remain in either a posiiscrete because the height of the pile is measured in num-
tive or negative state is identical. However, this situation ispers of grains. The solid line is a continuous fit to this PDF
only true for returns to the initial location. The distribution of having the formP(sh)=B exd —g(sh)] whereg(sh) is a
times for a sojourn between a level crossmg 0 will de-  ninth order polynomial in odd powers h andB provides
pend upon whethef>a or {<a. the normalization for the continuous representation. The con-

Inserting appropriate parameter values for the rice-pil&inuous FNBM Eq.(4) is monitored and subjected to addi-

simulation givesy=2-0.2-0.1=1.7, and this still differs tional height decrements whose frequency is determined by
from the observed value of~2.16. However, this FNBM  P(sh). If the additional fluctuations caugét) <O the trap-
occurs on the fueling time scale and does not account for thging time is terminated, whereas §{t)>0 throughout the
additional fluctuations in height that occur between feedSFNBM continues on the fueling time scale. The distribution
These fluctuations are described in the next section and irvf first return times is shown by the full line in Fig. 6. This is
corporated into the random walk. a power law with indexv~ 2.16 for times 2<t=<200, which

matches the result for the cellular automaton. For longer

IV. MODIFICATIONS ON THE INTRAFUELING TIME
SCALE

Figure 4 is a schematic of the temporal fluctuations in o

height at a single site. The thick and thin lines depict height 0.25
fluctuations on the fueling and intrafueling time scales, re-

spectively. The dashed horizontal lines show those periods; P(Sh)°‘2

for which particular grains are trapped. Grain 1 is buried at 0.15
the start of the section and remains so throughout. Grain z
arrives at the site between the first and second feeds, and i 0.1

trapped for a short period before further activity on the in-
trafueling time scale brings it to the surface, whereupon it is
ejected at~1.7. Recall that the trapping time occurs on the - - —~ = - - 0
fueling time scale; hence, because the grain was buried an G

disinterred within the same time step, its trapping time is %

zero and does not contribute to the distribution. Contrast this FIG. 5. PDF for downward fluctuations in height on the intrafu-
with grain 3, which is buried at=1 and would move off at eling time scale where dots are data from the simulation. The full
t=6 if the FNBM were to apply exclusive of any other ef- curve is the function fit.

0.05
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FIG. 6. Return time distribution for the FNBM modified by the
intrafueling time scale fluctuations. The parameters used are tho§fh
optamed_ from the rice-pile data:=—0.94, H :0'2.' The power_-law the parameters as in Fig. 6. The power-law tail has ingde®.4 for
tail has indexv=2.16 for shorter return times in accord with the shorter return times
rice-pile data. The short dashed line shows the analogous return '

time distribution without additional fluctuations and has tail index . . .
1.7. ments effectively enhances the Hurst exponent for antipersis-

tent motion, but has no effect when the motion is persistent.
To obtain a match between the indices characterizing rice-
pile data and fractional non-Brownian motion requires incor-

as the index for the FNBM without the intrafueling time N iy : : y
scale modifications, shown by the long dashed line. This is thorating into FNBM additional fluctuations in height occur-
' ing on the intrafueling time scale, the effect of which is to

be expected because the FNBM describes diffusive trajectd—

ries that can attain arbitrarily large distances from the origin€'Minate the longer trapping times and therefore raise the

where the intrafueling time scale fluctuations have no eﬁecyalu.e. of the mde_x. The shape of the d|str|bqt|on of these
in modifying the motion. The skewness of the height fluc-additional fluctuations affects the value of the index charac-

tuations is an important ingredient, for if these were modeled®rZing the power-law tail and this observation presents the
by FBM with the same correlation properties and intrafuel-CPPOrtuNity for tashioning systems to have particular prop-

ing time scale fluctuations, the distribution of the first returnert'_?s OB.OltJt%OTeS'd icted in Fia.(4 is similar to that
times would haver~2.26, whichoverestimateshe index. d ('ab' IS rfll utlont. eplche n 'g'(. ) is simuiar tOII a
Performing the simulation again but with a different escribing fluctuation pnenomena in experimentaily mea-

P(sh) illustrates the importance of the form adopted by thetsured ??ﬁ S|mulatted Compfl_e>_<t sy_ste[r:l§]. Ct())mmé)n _fea-d_ .
intrafueling time scale fluctuations for the distribution of re- urés of these systems are nnite size, open bounaaries, dissi-
turn times. For example, choosirR(sh) to be a uniform pation, and the existence of inner and outer scale sizes for the

distribution with the same mean as that described by th(Ijluctuatlons. In th.e present context this dlstrlbut|or_1 relates to
extremal fluctuations and it is, perhaps, suggestive that the

cellular automaton gives the return time distribution shown S S
in Fig. 7. For times in the range2t=<100 the indexv is PDF Eq.(1) |s_3|m|la_r to th_e error .d'St”bu.t'O'ﬁﬂ]' HOW.
- ever, the possible universality of this PDF is not the point of
strongly modified to~2.4. Thus random walks are more ; : )
central interest here. Rather it forms but one element in a

effectively terminated upon incorporating uniformally dis- X ) . e .
tributed intrafueling time scale fluctuations. For longer timesCOmpIex chain from which Ley-like statistics ultimately ob-

. tain.
the power law increases to-1.7 as before. Additional materials including animations of the cellular

automaton can be viewed at http://spencer.nott.ac.uk/
V. SUMMARY AND CONCLUSIONS ~ etzrt/index.html

FIG. 7. Return time distribution for the FNBM modified by
iformly distributed intrafueling time scale fluctuations with all

times the power law increases to-1.7, which is the same

This paper has sought to clarify the reason for the occur-
rence of heavy tailed trapping-time distributions obtained in ACKNOWLEDGMENTS
rice-pile experiments and cellular automata simulations. The . . . )
trapping time is equivalent to the time a grain remains buried 1his work was supported by the United Kingdom Engi-
beneath the surface of the pile, and the distribution of thesBeering and Physical Science Research Council and by the
times is therefore equivalent to the first return time distribu-L€verhulme Trust.
tion of the height fluctuations of the pile. When measured on
the fueling time scale, the height fluctuations are described
by a skewed, antipersistent, fractal random process whose
return time distribution differs from that for fractional The MNLT technique works by first equating the cumu-
Brownian motion. The skewness of the distribution of incre-lative distribution of a Gaussian process with zero mean and

APPENDIX: MNLT TECHNIQUE
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unit variance to the cumulative distribution of the non- Ac (1 [Ah\”R
Gaussian process, i.e., ?F(E(E) ) Ah=0
Q(Ah)=
A 1 [Ah\#
Al 2] e
moo\p\C

J dy p(y)= ;yzj dx’ exp(—x'2/2)= 1erfc(x/\/i)
Ah (2m) 7% 2 wherel'(a,x) is the incomplete Gamma functi¢h8]. Equa-
tions (3b) result upon inverting these expressions.

The correlation function of the non-Gaussian process can
with erfc(x) the complementary error functiofil8]. The  now be expressed in terms of a joint Gaussian process with

complementary quantile functiorQ(Ah) of the non-  autocorrelation functiomg(t) and distributionPg upon us-

Gaussian process, defined through ing:
(Ah(t)Ah(0))
" p)=—m—
! ’ o
f dy'p(y")=Ah,
Q(Ah)

=f dx’f dX"Ah(x")Ah(X")Pg(x",x",rg(t)).

is used to construct a transformation that maps the inpufhe integrals can be performed upon expressing the joint
Gaussian random valueg(t) to the output non-Gaussian Gaussian distribution as an expansion in terms of Hermite
random valueg\h(t): polynomialsH ,(x) [18],

exd — 3(x'?+x"?)]

1 PG(X,!X”irG(t)):
Ah(t)zQ(Eerfc[x(t)/\/E]). 27
5 HA (X IV2)H (X2
3 ol C) In( 2 o
=0 i
For the distribution of the height changes given by EQ. " :
the complementary quantile function is whence the result3a) in the text.
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