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Fractional non-Brownian motion and trapping-time distributions of grains in rice piles

K. I. Hopcraft, R. M. J. Tanner, E. Jakeman, and J. P. Graves
Theoretical Mechanics Division, School of Mathematical Sciences, University of Nottingham, University Park,

Nottingham, NG7 2RD, United Kingdom
~Received 26 January 2001; published 24 July 2001!

Non-Gaussian height fluctuations occurring on the fueling time scale of a slowly driven rice pile match those
observed in some turbulent/critical phenomena, forming an anticorrelated random fractal process with Hurst
exponentH50.2. Inspired by this observation, the concept of fractional Brownian motion~FBM! is extended
to treat stochastic processes with skewed increments. Simulations of this process for antipersistent motion have
first return time distribution deviating from thet221H law for FBM. The first return time distribution of this
fractional non-Brownian motion describes and quantitatively determines the trapping-time distribution of
grains in rice piles upon incorporating a continuous representation of the additional height fluctuations that
occur on the time scale between fueling events.

DOI: 10.1103/PhysRevE.64.026121 PACS number~s!: 02.50.2r, 89.75.Da, 05.65.1b
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I. INTRODUCTION

Sand piles@1# or rice piles@2,3# have become model para
digms for self-organized critical~SOC! phenomena in non
equilibrium complex systems, and SOC has been use
describe physical@4#, biological @5#, and economic@6# be-
haviors, among others@7#. The models are rules for redistr
bution of a physical quantity to nearest neighbor locatio
once a local nonlinear stability threshold is exceeded, un
slow, continuous driving. The complex behaviors that obt
have prompted workers to seek links between SOC
stable random processes@8#. Non-Gaussian stable laws@9#
have probability density functions~PDF’s! possessing
power-law tailsp(x);x2n with indices in the range 1<n
,3, so the variance and higher moments of the distributi
do not exist. One property used to characterize rice-pile p
nomenology occurs on the fueling time scale and is the t
a grain remains at rest before being transported to ano
site—the ‘‘trapping time.’’ Experiments and simulation
@2,3# have PDF’s for these trapping times with tails of ind
n'2.16 falling within that part of the stable regime fo
which a mean trapping time exists. Although scaling arg
ments have been invoked to collate different system s
and rice-pile algorithms within universality classes, the r
sons why the trapping-time distribution is apparently asym
totically stable andn adopts specific values have not be
explained nor related to the microdynamics of the syste
This paper sheds light on these two issues through link
the PDF of trapping times to the distribution of first retur
of a random walk whose increments represent the fluc
tions in the height of the pile occurring on two separate ti
scales.

A quantitative determination of the value ofn requires
implementing different diagnostics in a rice-pile cellular a
tomaton to ascertain the form of fluctuations in the height
the pile and their correlation properties. These diagnos
reveal that the height of the pile, when viewed on the fuel
time scale, is described by a fractal random process w
non-Gaussian increments. It will be argued that the trapp
time distribution is equivalent to the first return time of th
random process, and its description requires broadening
1063-651X/2001/64~2!/026121~6!/$20.00 64 0261
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concept of fractional Brownian motion~FBM! to one with
skewed increments. The first return distribution of this ‘‘fra
tional non-Brownian motion’’~FNBM! differs from that for
FBM. Further diagnostics examine the height fluctuatio
occurring on the intrafueling time scale occurring betwe
fueling events. These fluctuations modify the FNBM by te
minating longer trapping times and provide quantitati
agreement with cellular automaton data.

Fractional Brownian motion@10# describes the trajectory
of a particle whose increments have a Gaussian distribut
The Hurst exponentH measures the degree of correlation
the random walk constructed from these increments. Pe
tence or antipersistence occurs ifH is greater or less than12 ,
respectively, and Brownian motion occurs whenH5 1

2 . For a
particle undergoing FBM, the distribution of first return has
stable-law tail with indexn522H @11#, being exactly stable
whenH5 1

2 @12#.
Were the height of a pile executing FBM, the time for

grain to return to the surface would have a distribution w
index in the range 1,n<2. A grain can move and thereb
end its trapping time only when at the surface of the p
hence the trapping-time distribution should match that
the first return time. This observation is contradicted by
measured values, which haven.2, for both experiment and
simulation. Thus the height of the pile cannot be describ
by a FBM. This deduction is borne out in what follows b
delineating the competing effects that result from the ske
ness of the distribution of height fluctuations occurring
the fueling time scale and the modifications introduced
the fluctuations occurring on the intrafueling time scale.

In the following section, the rice-pile cellular automato
is briefly described and the height fluctuations of the pile a
their correlation properties obtained and fitted to a mod
Section III describes the technique used for obtaining
continuous stochastic process that determines these flu
tions and the results of computer simulations of this proc
which are used to obtain the first return time distributio
Section IV considers how the height fluctuations occurr
on the intrafueling time scale alters the first return distrib
tion. The final section summarizes the main results a
briefly discusses the implications. Technical details of h
©2001 The American Physical Society21-1
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the continuous non-Gaussian stochastic process is obta
from a suitably correlated Gaussian process are assigne
the Appendix.

II. HEIGHT FLUCTUATIONS OF A RICE PILE ON THE
FUELING TIME SCALE

The rice-pile cellular automaton, whose rules are
scribed in@3#, retains the identity of any grain in the pile, an
so sophisticated diagnostics can be applied to elucidate
various behaviors it produces. One such diagnostic is
height changeDh between consecutive fuelings, which
monitored for all sites in the pile beyond the location of t
central fueling point.

The PDF ofDh, shown by data points in Fig. 1~a!, is
stationary and independent of the pile size. It has zero m
variance ^Dh2&5s253.01, and skewness coefficients
5^Dh3&/s3/2'20.94. These height fluctuations have a d
tribution similar to that describing experimentally measur
fluctuations of a confined turbulent flow and numerically c
culated critical behavior in a ferromagnet@13#. The PDF

p~Dh!5H A exp~2uDh/acub!, Dh,0

A exp~2uDh/cum!, Dh>0 ~1!

adequately models these data and is shown by the da
line in Fig. 1~a! for b51.13, m51.98, with constantsA, a,
andc determined by stipulating that the PDF have unit n
malization, zero mean, and variances2, viz.,

FIG. 1. The PDF ofDh for the cellular automaton on the fuelin
time scale are shown by data points in~a!, and the dashed line is Eq
~1!. Data points in~b! showr(t) for the height changes. The soli
line is Eq.~2! with H50.2.
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A5@cG~111/m!1acG~111/b!#21,

a5S G~112/m!

G~112/b! D
1/2

,

c25s2S G~111/m!1aG~111/b!

G~113/m!1a3G~113/b! D ,

with G(b) the Gamma function.
Another diagnostic that can be applied measures the

relation properties of the height fluctuations. Data poi
in Fig. 1~b! show the autocorrelation functionr(t)
5^Dh(t)Dh(0)&/s2, where the time lag is measured in fu
eling events and the angular brackets denote an ense
average over the same sites as those for which the PDF~1! is
valid. Assuming the heighth of the pile is a~nonstationary!
fractal process with structure function̂@h(t)2h(0)#2&
;2utu2H yields an autocorrelation function for the~station-
ary! increments

r~ t !5
1

2
~ u11tu2H1u12tu2H22utu2H!, ~2!

and the curve that results is shown by the solid line in F
1~b! for whenH50.2.

The autocorrelation function~2! satisfies

E
2`

`

dt8r~ t8!5H 0, H,1/2

1, H51/2

`, H.1/2

and has power-law memory for large times withr(t)
;H(2H21)t2(H21). These two results indicate that the pr
cess is antipersistent ifH, 1

2 . An anticorrelated fractal pro-
cess therefore accurately describes height changes of the
on the fueling time scale. The first return distribution of su
random motion will now be considered.

III. THE FIRST PASSAGE DISTRIBUTION
OF NON-GAUSSIAN CORRELATED NOISE

Although algorithms exist for generating FBM with pre
scribedH ~e.g.,@14#!, these are inapplicable to motions wit
non-Gaussian increments. Indeed, until very recently it
been impossible to rigorously generate noise having a
trary, exponentially bounded single interval statistics a
prescribed autocorrelation function. The ‘‘memoryless no
linear transformation’’~MNLT ! @15# enables such noise to b
formed from a suitably correlated Gaussian random proc
for which the method of generation by Fourier synthesis
known ~e.g., @16#!. Details of the MNLT technique are as
signed to the Appendix.

A lengthy but straightforward calculation following Re
@15# obtains the result
1-2
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r~ t !5
1

2p (
n50

`
r G~ t !n

2nn!

3S E
2`

`

dx exp~2x2/2!Hn~x/A2!Dh~x! D 2

~3a!

where

Dh~x!55 acH G1/b
21S ~12erfc@x/A2#/2!

AacG~111/b!
D J 1/b

, x,xc

cH G1/m
21S erfc~x/A2!

2AcG~111/m!
D J 1/m

, x>xc .

~3b!
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The variablexc5A2erfc21(2Ac), andGm
21(x) is the inverse

of the ‘‘regularized’’ incomplete Gamma function, define
through Gm(x)51/G(m)*x

`du um21 exp(2u). Equation~3a!
expresses the non-Gaussian correlation functionr(t) as a
power series of terms involving the Gaussian correlat
function r G(t) which can be used to obtainr G(t)
5r G„r(t)…. Equation~3b! provides the mapping for genera
ing random numbers with PDF~1! from a standard Gaussia
random variablex.

To illustrate the modifications to FBM caused by skew
increments, such as those described by Eq.~1!, consider fix-
ing the mean, variance, andm to the values given above an
useb as the variable to control the skewness of the proc
through
s5
33/2@G~114/m!2a4G~114/b!#@G~111/m!1aG~111/b!#1/2

@G~113/m!1a3G~113/b!#3/2
.
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A non-Gaussian process$Dh(t)% with correlation function
r(t) can be derived from a Gaussian process$x(t)% with
zero mean, unit variance, and correlation functionr G(t), in
the following way. First a sequence of uncorrelated Gauss
random numbers is generated using any standard met
The correlation function of the non-Gaussian process gi
by Eq. ~2! is used in conjunction with Eq.~3a! to obtain the
correlation function of the Gaussian processr G(t)
5r G„r(t)…, the inversion being performed numerically. Th
is then used to generate a sequence of correlated Gau
random numbers$x(t)% by the Fourier synthesis metho
@16#. These random numbers are used as inputs in Eq.~3b! to
form a sequence of non-Gaussian random numbers$Dh(t)%
that have the correct autocorrelation functionr(t). With
these correlated non-Gaussian random numbers, the
tional non-Brownian motion

z~ tn![h~ tn!2^h&5(
j 51

n

Dh~ t j ! ~4!

is formed.
The first return time distribution ofz, or ‘‘down cross-

ings,’’ gives the epochs for whichz.0. In the context of the
rice pile, these epochs can be interpreted as the time betw
the burial of a grain and its reemergence at the surface o
pile. The PDFp(t,s) for the times between an up and
down crossing have a power law with indexn522H
2 f (s,H), as confirmed in Fig. 2, which displays the devi
tion of the tail of the return time distribution from that fo
FBM for a subset of all the results. Plottingt22Hp(t,s) as a
function of t for H50.2 ands50, 20.94, and21.75 and
then fitting the data to a line using least squares obta
f (s,H). Figure 3 showsf (s,H) as a function ofs for two
values ofH. In both casesf is symmetric abouts50, being
necessarily zero ats50 when the motion reverts to FBM
n
od.
n
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c-
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s

The open circles are forH50.2, the star corresponds to p
rameters for the rice-pile simulation, and the filled circles a
for H50.35. For larger absolute values ofs, f saturates in
both instances, although the saturation value decrease
H→1/2. This is to be expected because the motion m
necessarily be Brownian whenH51/2 by virtue of the cen-
tral limit theorem@12#, and this observation is confirmed b
the simulations. For valuesH.1/2, f [0 and so the return
times remain the same as those for FBM. Thus the skewn
of the underlying process effectively enhances the value oH
appearing in the exponent for the return times forH,1/2.

The data forming each point in Fig. 3 are determined fro
;106 realizations and each point in the diagram is obtain
using the technique exemplified by Fig. 2 from a power-la
tail extending over 3.3 decades. This exceeds the 3 dec
of power-law behavior displayed in@11#. The simulations are

FIG. 2. Data fors520.94 ands521.75 show the deviation of
the return time distribution from FBM (s50) on the fueling time
scale. The Hurst exponentH50.2 in each case.
1-3
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insensitive to finite step-size effects. Inaccuracies induced
these would manifest themselves as a biasing of the ran
walk, being especially evident whenH.1/2. None of the
simulations exhibit such a drift for any value ofH considered
and the processz(t) has zero mean throughout. Consideri
the time between an up and down crossing gives the di
bution of times for whichz,0 and this has identical distri
bution to the times for whichz.0. Indeed, this must be s
because bothDh(t) and z(t) have zero mean, and so th
average amount of time the processes remain in either a p
tive or negative state is identical. However, this situation
only true for returns to the initial location. The distribution
times for a sojourn between a level crossinga5” 0 will de-
pend upon whetherz.a or z,a.

Inserting appropriate parameter values for the rice-p
simulation givesn5220.220.151.7, and this still differs
from the observed value ofn;2.16. However, this FNBM
occurs on the fueling time scale and does not account for
additional fluctuations in height that occur between fee
These fluctuations are described in the next section and
corporated into the random walk.

IV. MODIFICATIONS ON THE INTRAFUELING TIME
SCALE

Figure 4 is a schematic of the temporal fluctuations
height at a single site. The thick and thin lines depict hei
fluctuations on the fueling and intrafueling time scales,
spectively. The dashed horizontal lines show those per
for which particular grains are trapped. Grain 1 is buried
the start of the section and remains so throughout. Gra
arrives at the site between the first and second feeds, a
trapped for a short period before further activity on the
trafueling time scale brings it to the surface, whereupon i
ejected att;1.7. Recall that the trapping time occurs on t
fueling time scale; hence, because the grain was buried
disinterred within the same time step, its trapping time
zero and does not contribute to the distribution. Contrast
with grain 3, which is buried att51 and would move off at
t56 if the FNBM were to apply exclusive of any other e

FIG. 3. The functionf appearing in the exponent for the retu
time distribution as a function ofs. Open circles are forH50.2.
The star denotes the value for the simulation. The filled circles
for H50.35.
02612
y
m

ri-

si-
s

e

e
s.
n-

t
-

ds
t
2
is

-
s

nd
s
is

fects. However, this neglects the intrafueling time scale fl
tuations that terminate the trapping time att;4.6. Thus the
FNBM overestimates the length of trapping times throu
not accounting for downward excursions in the height of
pile on the intrafueling time scale. Upward excursions of t
pile do not affect the dynamics.

The points in Fig. 5 show the PDF for the maximu
downward excursion for the height of the piledh on the
intrafueling time scale produced by the cellular automat
which has standard deviationsdh50.66. The distribution is
discrete because the height of the pile is measured in n
bers of grains. The solid line is a continuous fit to this PD
having the formP(dh)5B exp@2g(dh)# where g(dh) is a
ninth order polynomial in odd powers ofdh andB provides
the normalization for the continuous representation. The c
tinuous FNBM Eq.~4! is monitored and subjected to add
tional height decrements whose frequency is determined
P(dh). If the additional fluctuations causez(t),0 the trap-
ping time is terminated, whereas ifz(t).0 throughout the
FNBM continues on the fueling time scale. The distributi
of first return times is shown by the full line in Fig. 6. This
a power law with indexn;2.16 for times 2&t&200, which
matches the result for the cellular automaton. For lon

re

FIG. 4. Schematic of height fluctuations~arbitrary units! at a
single site on the fueling~thick lines! and intrafueling~thin lines!
time scales.

FIG. 5. PDF for downward fluctuations in height on the intraf
eling time scale where dots are data from the simulation. The
curve is the function fit.
1-4
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times the power law increases ton;1.7, which is the same
as the index for the FNBM without the intrafueling tim
scale modifications, shown by the long dashed line. This i
be expected because the FNBM describes diffusive traje
ries that can attain arbitrarily large distances from the ori
where the intrafueling time scale fluctuations have no eff
in modifying the motion. The skewness of the height flu
tuations is an important ingredient, for if these were mode
by FBM with the same correlation properties and intrafu
ing time scale fluctuations, the distribution of the first retu
times would haven;2.26, whichoverestimatesthe index.

Performing the simulation again but with a differe
P(dh) illustrates the importance of the form adopted by t
intrafueling time scale fluctuations for the distribution of r
turn times. For example, choosingP(dh) to be a uniform
distribution with the same mean as that described by
cellular automaton gives the return time distribution sho
in Fig. 7. For times in the range 2&t&100 the indexn is
strongly modified to;2.4. Thus random walks are mor
effectively terminated upon incorporating uniformally di
tributed intrafueling time scale fluctuations. For longer tim
the power law increases ton;1.7 as before.

V. SUMMARY AND CONCLUSIONS

This paper has sought to clarify the reason for the occ
rence of heavy tailed trapping-time distributions obtained
rice-pile experiments and cellular automata simulations. T
trapping time is equivalent to the time a grain remains bur
beneath the surface of the pile, and the distribution of th
times is therefore equivalent to the first return time distrib
tion of the height fluctuations of the pile. When measured
the fueling time scale, the height fluctuations are descri
by a skewed, antipersistent, fractal random process wh
return time distribution differs from that for fractiona
Brownian motion. The skewness of the distribution of inc

FIG. 6. Return time distribution for the FNBM modified by th
intrafueling time scale fluctuations. The parameters used are t
obtained from the rice-pile data:s520.94,H50.2. The power-law
tail has indexn52.16 for shorter return times in accord with th
rice-pile data. The short dashed line shows the analogous re
time distribution without additional fluctuations and has tail ind
1.7.
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ments effectively enhances the Hurst exponent for antiper
tent motion, but has no effect when the motion is persiste
To obtain a match between the indices characterizing r
pile data and fractional non-Brownian motion requires inc
porating into FNBM additional fluctuations in height occu
ring on the intrafueling time scale, the effect of which is
terminate the longer trapping times and therefore raise
value of the index. The shape of the distribution of the
additional fluctuations affects the value of the index char
terizing the power-law tail and this observation presents
opportunity for fashioning systems to have particular pro
erties or outcomes.

The distribution depicted in Fig. 1~a! is similar to that
describing fluctuation phenomena in experimentally m
sured and simulated complex systems@13#. Common fea-
tures of these systems are finite size, open boundaries, d
pation, and the existence of inner and outer scale sizes fo
fluctuations. In the present context this distribution relates
extremal fluctuations and it is, perhaps, suggestive that
PDF Eq.~1! is similar to the error distribution@17#. How-
ever, the possible universality of this PDF is not the point
central interest here. Rather it forms but one element i
complex chain from which Le´vy-like statistics ultimately ob-
tain.

Additional materials including animations of the cellul
automaton can be viewed at http://spencer.nott.ac
;etzrt/index.html
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APPENDIX: MNLT TECHNIQUE

The MNLT technique works by first equating the cum
lative distribution of a Gaussian process with zero mean

se

rn

FIG. 7. Return time distribution for the FNBM modified b
uniformly distributed intrafueling time scale fluctuations with a
the parameters as in Fig. 6. The power-law tail has indexn;2.4 for
shorter return times.
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unit variance to the cumulative distribution of the no
Gaussian process, i.e.,

E
Dh

`

dy p~y!5
1

~2p!1/2Ex

`

dx8exp~2x82/2!5
1

2
erfc~x/A2!

with erfc(x) the complementary error function@18#. The
complementary quantile functionQ(Dh) of the non-
Gaussian process, defined through

E
Q(Dh)

`

dy8p~y8!5Dh,

is used to construct a transformation that maps the in
Gaussian random valuesx(t) to the output non-Gaussia
random valuesDh(t):

Dh~ t !5QS 1

2
erfc@x~ t !/A2# D .

For the distribution of the height changes given by Eq.~1!
the complementary quantile function is
.

i,

on

-
.
-
re

nd

,

02612
ut

Q~Dh!5H Ac

b
GX1

b
,S Dh

ac D bC, Dh>0

12
Aac

m
GX1

m
,S Dh

c D mC, Dh,0,

whereG(a,x) is the incomplete Gamma function@18#. Equa-
tions ~3b! result upon inverting these expressions.

The correlation function of the non-Gaussian process
now be expressed in terms of a joint Gaussian process
autocorrelation functionr G(t) and distributionPG upon us-
ing:

r~ t !5
^Dh~ t !Dh~0!&

s2

5E
2`

`

dx8E
2`

`

dx9Dh~x8!Dh~x9!PG„x8,x9,r G~ t !….

The integrals can be performed upon expressing the j
Gaussian distribution as an expansion in terms of Herm
polynomialsHn(x) @18#,

PG„x8,x9,r G~ t !…5
exp@2 1

2 ~x821x92!#

2p

3 (
n50

`
Hn~x8/A2!Hn~x9/A2!

2nn!
r G~ t !n,

whence the result~3a! in the text.
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